
Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial
prisoner’s dilemma game

Matjaž Perc*
Department of Physics, Faculty of Education, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

�Received 26 September 2006; published 2 February 2007�

We study the impact of stochastic payoff variations with different distributions on the evolution of coopera-
tion in the spatial prisoner’s dilemma game. We find that Gaussian-distributed payoff variations are most
successful in promoting cooperation irrespective of the temptation to defect. In particular, the facilitative effect
of noise on the evolution of cooperation decreases steadily as the frequency of rare events increases. Findings
are explained via an analysis of local payoff ranking violations. The relevance of results for economics and
sociology is discussed.
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According to the fundamental principles of Darwinian se-
lection all individuals should act selfishly in order to maxi-
mize their fitness and assure best conditions for producing
offspring. The famous “only the fittest survive” principle
thus assumes an innate selfish drive that is inherently rooted
in each individual, forcing it to act exclusively in its own
good, thereby not paying any attention to the harm inflicted
on the neighbor or the population. This unadorned scenario is
concisely described by the classical well-mixed prisoner’s
dilemma game �1�, where cooperators always die out. How-
ever, healthy and successful societies depend on individuals
cooperating for the common good, even at the risk of per-
sonal loss. Thus, the discrepancy between theory and real-
life experience as well as observations �2� dictates the need
for more sophisticated theoretical approaches bridging the
gap.

Several mechanisms and theoretical supplements to the
classical prisoner’s dilemma as well as other games have
been proposed to describe the persistence of cooperative be-
havior. Spatial extensions �3�, reciprocity �4�, and strategic
complexity �5� are well established as being potent promot-
ers of cooperation. However, although very successful, these
mechanisms still require certain conditions to be met in order
for cooperative behavior to survive. Thus, it is often within
the framework of these seminal theoretical approaches that
additional or supplemental cooperation-facilitating mecha-
nisms are sought in order to assure as precise a description of
real-life scenarios as possible. Recently, a very promising
avenue of research has proved to be the addition of stochas-
ticity at some level of the game, thus resulting in a fruitful
consolidation of physics and evolutionary game theory �6�.
Stochastic gain in population dynamics has been reported in
�7�, while noise-induced cooperation promotion in the spatial
prisoner’s dilemma game has been presented in �8�. Small-
world and other complex topologies of players on the spatial
grid have also been identified as being relevant by the evo-

lutionary process �9�, as were the effects of finiteness in
population size �10�.

Presently, we study an important extension of noise-
induced cooperation in the spatial prisoner’s dilemma game
by studying not only the impact of Gaussian noise, but also
the effect of Lévy-distributed stochastic payoff variations on
the evolution of cooperation. Lévy distributions differ from
the Gaussian in that rare events occur more frequently, de-
pending on the value of the exponent via which the tails of
the Lévy distribution taper off in a power law manner �11�.
Perhaps the most important and celebrated field where Lévy
fluctuations have emerged as being widespread and relevant
is economics �12�. Thus, since unpredictable Lévy-
distributed payoff variations are plausible, the present study
addresses a relevant problem. We find that Lévy-distributed
payoff variations are less successful by maintaining coopera-
tion among the players on the spatial grid than their Gaussian
counterparts. More precisely, we find that Gaussian-
distributed payoff variations are most successful in promot-
ing cooperation irrespective of the temptation to defect,
while the facilitative effect of noise on the evolution of co-
operation decreases steadily as the frequency of rare events
increases. Due to the introduction of stochasticity in the pay-
offs, local violations of the prisoner’s dilemma payoff rank-
ing occur more or less often depending on the intensity of
noise. We find that the onset of these violations holds the key
to understanding noise-induced cooperation promotion in
general, as well as the deterioration of the facilitative effect
as the Gaussian distribution of payoff variations changes to-
wards the Lévy type.

In the following, we consider an evolutionary two-
strategy prisoner’s dilemma game with players located on
vertices of a two-dimensional square lattice of size n�n
with periodic boundary conditions. Each individual is al-
lowed to interact only with its four nearest neighbors located
to the north, south, east, and west, whereby self-interactions
are excluded. Cooperators �C� and defectors �D� are initially
uniformly distributed on the square lattice. A player Pg �g
=1, . . . ,n�n� can change its strategy after each full iteration
cycle of the game, whereby the performance of one ran-
domly chosen nearest neighbor Ph is taken into account ac-
cording to
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W�Pg ← Ph� =
1

1 + exp��Sg − Sh�/K�
, �1�

where K=0.1 is the uncertainty related to the strategy adop-
tion process �6�. The cumulative payoffs of both players
�Sg ,Sh�, acquired during each iteration cycle, are calculated
in accordance with the payoff matrix

Pg

Ph
C D

C
1 + �g

1 + �h

1 + r + �g

− r + �h

D
− r + �g

1 + r + �h

0 + �g

0 + �h

. �2�

Two cooperators receive the reward R=1, and two defectors
receive the punishment P=0, while a cooperator and defec-
tor receive the suckers payoff S=−r and the temptation T
=1+r, respectively, thus satisfying the prisoner’s dilemma
payoff ranking T�R� P�S if the temptation to defect r
�0. The presently applied additive noise ��g ,�h� is defined
by the characteristic function

ln ��t� = − ���t���1 − i� sgn�t�tan�	�/2�� + i
t , �3�

where �� �1,2�, �� �−1,1�, and 
�R. The corresponding
�-stable distribution is S��� ,� ,
� �11�, whereby � defines
the characteristic exponent determining the rate at which the
tails of distributions taper off. If 1���2, the mean of the
distribution exists and equals 
. Moreover, � is the scale
parameter determining the width of the distribution, which
by �=2 is Gaussian with variance 2�2. On the other hand, if
��2, the variance is infinite, whereby the frequency of rare,
or “big,” events increases as � decreases �11�. Finally, pa-
rameter � determines the skewness of the distribution, which
is leftward bound if ��0 and otherwise if ��0. The fol-
lowing analysis is constrained to the case where 
=0, pre-
serving the payoff ranking of the prisoner’s dilemma over
time among all interacting players, and �=0, resulting in
symmetrical payoff variations with respect to positive and
negative additions. Thus, the two main parameters are �

0 and 1���2, determining the effective strength and tail
behavior of the distribution of payoff variations, respectively.

The spatial prisoner’s dilemma game studied is iterated
forward in time using a synchronous update scheme, thus
letting all individual interact pairwise with their four nearest
neighbors. After every such iteration cycle of the game all
players simultaneously update their strategy according to Eq.

�1� and reset their cumulative payoffs to zero. For a large
enough number of game iterations �t
105� and large system
sizes �n
200�, the average frequencies of cooperators FC

and defectors FD approach an equilibrium value irrespective
of the initial distribution of strategies, provided long enough
discard times are taken into account. Figure 1 shows the
severity of finite-size effects by a given � and � for the
defection temptation value r=0.02. By constant payoffs ��
=0� cooperators are able to survive on the spatial grid only if
r is smaller than a given threshold value, which for the pres-
ently applied game iteration scheme and player adoption rule
equals rtr=0.006 34.

Next, we study the impact of different stochastic payoff
variations on the equilibrium frequencies of cooperators on
the spatial grid. Figure 2 shows characteristic snapshots of
the spatial grid for three different values of � and r=0.02.
Note that without the introduction of noisy payoff variations
cooperators would go extinct. Remarkably, though,
Gaussian-distributed payoff variations of appropriate � are
able to boost the fraction of cooperators to nearly 50%, as
shown in the left panel of Fig. 2. However, as the Gaussian
distribution is relaxed to follow the Lévy distribution by the
same �, obtained for all ��2, the facilitative effect of noise
on the cooperative strategy deteriorates substantially, as
shown in the middle and right panels of Fig. 2.

FIG. 1. Example of finite-size effects by �=0.15 and �=1.4.
Lines depict current fractions of cooperators �FC� � on the spatial
grid. Clearly n=50 is too small as cooperators die out due to finite-
ness related stochasticity. By n=200 and n=800 values start to
fluctuate around an equilibrium �after initial transients�, whereby
fluctuations are substantially smaller by the larger lattice. Nonethe-
less, if initial 3�104 values are discarded the average fraction of
cooperators FC differs absolutely only by ±0.002. Near extinction
thresholds in Fig. 3 finite-size effects can be more severe, but the
range of � for which cooperators survive is accurate within ±3% if
n=200.

FIG. 2. Characteristic equilib-
rium spatial distributions of coop-
erators �black� and defectors
�white� obtained by �=0.15 and
�=2.0 �FC=0.48, left panel�, �
=1.6 �FC=0.36, middle panel�,
and �=1.4 �FC=0.18, right panel�
for the defection temptation value
r=0.02. All panels are depicted on
a 200�200 spatial grid.
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To study the trend outlined in Fig. 2 more precisely, we
calculate FC in dependence on � and � for different r�rtr, as
shown in Fig. 3. It becomes instantly obvious that stochastic
payoff variations are most successful in promoting coopera-
tion if they follow a Gaussian distribution that is obtained by
�=2. As soon as ��2 the facilitative effect deteriorates con-
tinuously irrespective of r. Not surprisingly, though, the
overall facilitative effect of noise lessens as r increases from
the left towards the right panel of Fig. 3 since the benefit of
cooperation in comparison to possible losses decreases, and
thus the mechanism of stochastic cooperation promotion can
no longer compensate for this deterministic effect. It is also
interesting to note that there always exist an intermediate �
for which the promotion of cooperation by noise is maximal.
We recently argued that the phenomenon is conceptually
identical to coherence resonance often reported within the
framework of noise-driven dynamical systems �13�.

Finally, it remains of interest to provide an explanation for
the mechanism of stochastic cooperation promotion and for
the deterioration of the effect as the Gaussian distribution of
payoff variations changes towards the Lévy type. We argue
that noise-induced payoff ranking violations of the prisoner’s
dilemma game hold the key to understanding. Since average
additions to the payoffs of each player due to noise equal
zero ���g�time=
=0 for ∀ g�, the payoff ranking T�R� P
�S is preserved on average over time. However, since the
absolute magnitude of noise is allowed to exceed r or 1
locally—i.e., whenever two neighbors on the spatial grid
interact—violations of the payoff ranking are possible at ev-
ery instance of the game. We define two possible types of

local payoff ranking violations that can occur whenever two
individuals interact. First, let va denote the frequency of how
often T�R and P�S rankings are violated. Note that both
inequalities differ by r. Second, let vb denote the frequency
of how often the R� P ranking is violated. Note that this
inequality will be violated less often by a given � than the
former two since R and P differ by 1, which is substantially
larger than r. We argue that the facilitative effect of noise on
cooperation is directly related to va. In particular, if va�0,
two cooperators might end up receiving a larger payoff each
than a defector facing a cooperator. Also, a cooperator facing
a defector might be better off than two defectors. These two
facts obviously favor the cooperative strategy since they po-
tentially nullify the advantage r defectors have over coopera-
tors. On the other hand, this facilitative effect is limited by
vb. Namely, as vb�0 two defectors might be better off than
two cooperators, which again gives the winning edge to the
defecting strategy, and hence results in a resonant depen-
dence of cooperation fitness. Although being fairly simple,
the described explanation outlines a general mechanism of
cooperation promotion in the spatial prisoner’s dilemma
game.

With the proposed explanation in mind, it is straightfor-
ward to see why Lévy-distributed payoff variations are less
successful in promoting cooperation than Gaussian noise. In
particular, as � decreases the frequency of rare events in-
creases, and thus vb grows faster in dependence on �, which
ultimately hinders the facilitative effect. More precisely, if
�=2, corresponding to Gaussian noise, vb grows the slowest,
yielding the best promotion of cooperation in comparison to
Lévy-distributed disturbances, as shown in Fig. 4. In accor-
dance with the proposed explanation, rare events by ��2
also induce faster growing va, which results in cooperation
facilitation already by smaller � in comparison to Gaussian
noise, but also narrows the overall range of � in which co-
operation promotion is still possible.

In sum, we show that Gaussian-distributed payoff varia-
tions are most successful in promoting cooperative behavior
by a given effective strength of disturbances, �. The facili-
tative effect of noise in general, as well as its deterioration by
the transition from the Gaussian towards Lévy distributions,
is attributed to local payoff ranking violations, which argu-
ably hold the key to understanding the presented phenomena.

Lévy-distributed stochastic processes are common in eco-
nomics �12�, where they account for the statistical descrip-
tion of rare events �e.g., stock market breakdowns, sudden
bankruptcies of large enterprises, etc.�, which in reality occur
far more often as one might have anticipated from the Gauss-

FIG. 4. Promotion of cooperation by r=0.02 for �=2.0 �solid
line�, �=1.6 �dashed line�, and �=1.2 �dotted line�. Gray lines in
corresponding line styles show the pertaining dependence of vb

on �.

FIG. 3. Promotion of coopera-
tion by stochastic payoff varia-
tions in dependence on � and �
for r=0.01 �left panel�, r=0.02
�middle panel�, and r=0.03 �right
panel�. In all cases �=0.001 �see
the y axis�.
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ian distribution. Thus, they represent and important family of
stochastic processes that apparently have wide-reaching con-
sequences for the welfare of society. In future studies, it
would be interesting to study the effects of stochastic payoff
variations also in the framework of other games, such as, for
example, the hawk-dove game �14�, where subtle changes in

payoff rankings have already been found to yield qualita-
tively different behavior on the spatial grid in comparison to
the prisoner’s dilemma game �15�.
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